ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины Б1.О.14 «Теоретическая механика»

для направления 08.03.01 "Строительство" по профилям «Водоснабжение и водоотведение», «Промышленное и гражданское строительство» Форма обучения — очная, очно-заочная

по профилю «Автомобильные дороги» Форма обучения – очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа рассмотрена и утверждена на заседании кафедры «Механика и прочность материалов и конструкций» Протокол № 6 от $18.12.2024 \, \Gamma$

Заведующий кафедрой «Механика и прочность материалов и конструкций» 20 г.	 С.А. Видюшенков
СОГЛАСОВАНО	
Руководитель ОПОП ВО по профилю «Автомобильные дороги» 20 г.	 А.Ф. Колос
Руководитель ОПОП ВО по профилю «Водоснабжение и водоотведение» 20 г.	 Н.В. Твардовская
Руководитель ОПОП ВО по профилю «Промышленное и гражданское строительство» 20 г	Г.А. Богданова

1. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы

Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы, приведены в п. 2 рабочей программы.

2. Задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций в процессе освоения основной профессиональной образовательной программы

Перечень материалов, необходимых для оценки индикатора достижения компетенций, приведен в таблицах 2.1 и 2.2.

Таблица 2.1

Для очной формы обучения

Индикатор достижения компетенции	Планируемые результаты обучения	Материалы, необходимые для оценки индикатора достижения компетенции
_	нь задачи профессиональной деятельност актических основ естественных и техни математического аппарата	
ОПК-1.1.1. Знает теоретические и практические основы естественных и технических наук, а также математического аппарата для решения задач профессиональной деятельности	пространстве и на плоскости. — теорию пар сил, свойства пар сил, приведение силы к данному центру по способу Пуансо; — законы образования силы трения сцепления, силы трения скольжения и силы трения качения. — кинематические характеристики материальной точки и твердого тела; — векторный, координатный и естественный способы задания движения точки; — законы поступательного, вращательного, плоского сферического и свободного движения; — основные понятия сложного движения, теорему об абсолютной скорости точки в сложном движении, теорему Кориолиса; — основные законы механики Галилея-Ньютона, дифференциальное уравнения динамики свободной материальной точки в декартовых координатах;	Тестовые задания Вопросы к экзамену № 6,7,8, Типовая задача № 1,№ 2 Вопрос к экзамену № 3, Тестовые задания Вопрос к экзамену № 9, Вопросы к экзамену № 13, 15 Тестовые задания Вопрос к экзамену № 14 Тестовые задания Вопросы к экзамену № 16-20, Вопрос к экзамену № 16-20, Вопрос к экзамену № 23-27, Типовая задача № 7 Тестовые задания Вопросы к экзамену № 28-30, Тестовые задания

	движения, уравнение вращательного движения, момент инерции тела относительно оси; — закон сохранения механической энергии, теорему Кенига, теорему об изменении кинетической энергии материальной точки и механической системы. — понятие потенциального силового поля, силовую функцию,	Вопросы к экзамену № 32-37, Тестовые задания Вопросы к экзамену № 40-45, Тестовые задания Вопрос к экзамену № 38, Вопрос к экзамену № 39,
ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и технических наук, а также математического аппарата	Обучающийся умеет: — решать задачи по нахождению реакций опор твердого тела с помощью уравнений равновесия системы сходящихся сил; — находить момент силы относительно точки и оси; — определять реакции в опорах и усилия в стержнях плоской фермы; — находить главный вектор и главный момент произвольной пространственной системы сил. — решать задачи по нахождению кинематических характеристик материальной точки и твердого тела; — решать задачи по нахождению абсолютной скорости и абсолютного	Вопросы к экзамену № 1,2, Тестовые задания Типовая задача № 3, Вопрос к экзамену № 2,
ОПК-1.3.1. Владеем теоретическими и практическими основами естественных и технических наук, а также математического аппарата в объеме, необходимом для решения задач профессиональной деятельности	Обучающийся владеет навыками применения основ теоретической механики для решения практических задач применительно к зданиям и сооружениям	Вопросы к экзамену № 6,7,8, Типовая задача № 1, № 2, Типовая задача № 3, №4.

Таблица 2.2

Индикатор достижения компетенции

Планируемые результаты обучения

Материалы, необходимые для оценки индикатора достижения компетенции

ОПК-1 Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата

ОПК-1.1.1.

Знает теоретические и практические основы естественных и технических наук, а также математического аппарата для решения задач профессиональной деятельности

Обучающийся знает:

- основные понятия и аксиомы статики:
- условия произвольной сил системы пространстве и на плоскости.
- приведение силы к данному центру по способу Пуансо;
- законы образования силы трения сцепления, силы трения скольжения и силы трения качения.
- кинематические характеристики материальной точки и Вопрос к экзамену N_{2} 9, твердого тела;
- векторный, координатный и способы задания естественный движения точки;
- законы поступательного, вращательного, плоского сферического и свободного движения;
- основные понятия сложного движения, теорему об абсолютной скорости точки в сложном движении, *Контрольная работа №*2 теорему Кориолиса;
- основные законы механики Галилея-Ньютона, дифференциальное уравнения динамики свободной материальной точки в декартовых координатах;
- теорему о движении центра Вопросы к экзамену № 28-30, масс механической системы;
- уравнение поступательного движения, уравнение вращательного инерции движения, момент относительно оси;
- закон механической энергии, теорему теорему об изменении Кенига, кинетической энергии материальной $|_{Bonpocbi}$ к экзамену N_{2} 40-43, точки и механической системы.
- понятие потенциального силовую силового поля, понятие потенциальной энергии;
- работы понятие силы на конечном перемещении потенциальном поле;

Вопрос к экзамену № 1, равновесия Тестовые задания в Контрольная работа №1

теорию пар сил, свойства пар Вопросы к экзамену N_2 6,7.8, Тестовые задания Контрольная работа №1

> Bonpoc κ экзамену № 3, Тестовые задания

Тестовые задания

Вопросы к экзамену № 13, 15 Тестовые задания

Вопрос к экзамену № 14 Гестовые задания

Вопросы к экзамену № 16-20, Тестовые задания

Вопрос к экзамену № 23-27, Тестовые задания

Тестовые задания

Вопрос к экзамену № 31, тела Тестовые задания Вопросы к экзамену № 32-37, сохранения Тестовые задания

Тестовые задания

функцию, $Bonpoc \ \kappa$ экзамену $N_{\overline{2}}$ 38, Тестовые задания

> В Вопрос к экзамену № 39, Тестовые задания

ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и технических наук, а также математического аппарата	 решать задачи по нахождению реакций опор твердого тела с помощью уравнений равновесия системы сходящихся сил; находить момент силы относительно точки и оси; определять реакции в опорах и усилия в стержнях плоской фермы; находить главный вектор и главный момент произвольной пространственной системы сил. решать задачи по нахождению кинематических характеристик материальной точки и твердого тела; решать задачи по нахождению абсолютной скорости и абсолютного ускорения материальной точки в сложном лвижении, решать залачи по 	Контрольная работа №1 Вопросы к экзамену № 1,2, Тестовые задания Вопрос к экзамену № 2, Тестовые задания Контрольная работа №2 Вопрос к экзамену № 5 Вопросы к экзамену № 13,14,15, Тестовые задания Вопросы к экзамену № 24, 25, 26, 27. Тестовые задания , Вопросы к экзамену № 38- 42, Тестовые задания Контрольная работа №2 Вопросы к экзамену № 40-43, Тестовые задания
ОПК-1.3.1. Владеем теоретическими и практическими основами естественных и технических наук, а также математического аппарата в объеме, необходимом для решения задач профессиональной деятельности	,	Вопросы к экзамену № 6,7,8, Контрольная работа №1, № 2

Материалы для текущего контроля

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания:

1. Перечень и содержание расчетно-графических работ

Для текущего контроля необходимо самостоятельно решить расчетно-графические работы. Варианты расчетно-графических работ необходимо брать из «Сборника заданий для курсовых работ по теоретической механике» под общ. ред. Яблонского А.А. Сборник содержит задания по статике, кинематике и динамике. Каждое задание имеет 30 вариантов для индивидуального выполнения. Обучающиеся могут разместить выполненные работы текущего контроля в СДО, в разделе «Текущий контроль».

- 1. Типовая задача № 1 Определение реакций опор плоского твердого тела.
- 2. Типовая задача № 2 Определение реакций опор составной конструкции
- 3. Типовая задача № 3 Определение реакций опор и усилий в стержнях плоской фермы.
- 4. *Типовая задача №* 4— Определение главного вектора и главного момента пространственной системы сил.
- 5. *Типовая задача №* 5 Определение скорости и ускорения точки по уравнениям ее движения. Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях.
- 6. Типовая задача № 6 Кинематический анализ плоского механизма
- 7. Типовая задача № 7 Определение абсолютной скорости и абсолютного ускорения точки.
- 8. *Типовая задача №*8– Применение теоремы об изменении кинетической энергии к изучению движения механической системы.

Перечень и содержание контрольных работ для очно-заочной формы обучения, кроме профиля «Автомобильные дороги»).

1. Контрольная работа № 1 включает в себя решение:

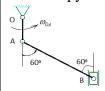
Типовая задача № 1— Определение реакций опор плоского твердого тела;

Типовая задача №2 – Определение реакций опор составной конструкции;

2. Контрольная работа № 2 включает в себя решение:

Типовая задача №6 – Кинематический анализ плоского механизма.;

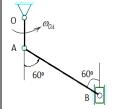
*Типовая задача №*8— Применение теоремы об изменении кинетической энергии к изучению движения механической системы.


Методика выполнений и пример оформления Контрольной работы № 1 и Контрольной работы №2 представлены в электронной информационно-образовательной среде ПГУПС (sdo.pgups.ru) в разделе «Текущий контроль» для обучающихся очно-заочной формы обучения.

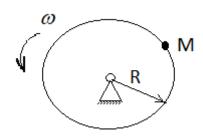
2. Тестовые задания

для очной, очно-заочной формы обучения

1. Дан кривошипно-шатунный механизм. Найти угловую скорость кривошипа OA, если известна скорость точки A Va=10 м/c, длина шатуна AB=8 м, длина кривошипа OA =2 м. (рад/c)


Ответ округлить до целого значения.

2.Ответ введите целым числом.


Дан кривошипно-шатунный механизм. Найти угловую скорость шатуна АВ, если известна

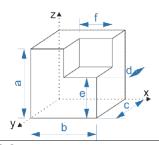
длина шатуна AB=8 м, длина кривошипа OA =2 м, ω_{OA} = 2 рад/с. (рад/с)

3. Ответ введите числом.

Деталь механизма совершает вращательное движение с угловой скоростью $\omega = 2$ рад/с. Найти скорость точки (м/с), лежащей на ободе детали, если радиус детали 0,58 м. Ответ округлить до сотых.

4. Ответ введите числом. Продемонстрируйте умение определять работу постоянной силы $\vec{P}=10~{\rm kH}~$, действующей на деталь механизма, при перемещении детали на расстояние S=0.2~m, если деталь скользит по плоскости, наклоненной под углом $\alpha=45~{\rm km}$ горизонту.

Скорость детали и сила \vec{P} , приложенная к детали, совпадают по направлению. (Дж) Ответ округлить до целого значения.


5. Ответ введите числом.

Определите момент инерции детали механизма - однородного стержня ОА длиной l=0,4 м и массой m=2 кг, вращающегося вокруг точки О, соответствующей его концу (кг*м²). Ответ округлите до десятых.

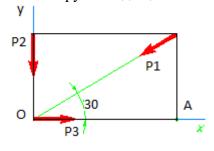
6. Введите ответ числом.

Найти координату центра тяжести детали механизма относительно оси x, если a=50 см, b=60 см, c=40 см, e=20 см, f=30 см, d=10 см.

Ответ округлить до десятых.

7.Ответ введите числом.

Находите проекцию скорости детали механизма, движущейся поступательно, по уравнению ее движения, заданному в координатной форме $x = 3t^2 + t + 3$, (м) в момент времени t=1 с (м/с)


Ответ округлить до целого значения.

8. Найдите сумму моментов сил, действующих на деталь механизма, относительно точки А. Исходные данные:

$$P_1 = 2\sqrt{3} \ \kappa H; P_2 = \sqrt{3} \ \kappa H;$$

$$P_3 = 4 \kappa H; OA = 2 M.$$

Ответ округлите до целого значения. (кН/м).

9. Ввелите ответ числом.

Колесо железнодорожного транспортного средства катится по рельсу без скольжения.

 V_{C} — скорость центра колеса; ω —угловая скорость его вращения. Скорость точки касания колеса с рельсом равна ...?

10.Введите ответ числом.

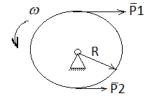
Автомобиль, движущийся прямолинейно равноускоренно, увеличил свою скорость с 3 м/с до 9 м/с за 6 секунд. С каким ускорением двигался автомобиль? Ответ округлить до целого значения.

11.Введите ответ числом.

Движение центра масс детали механизма в плоскости Оху определяется радиусом-вектором $\bar{r} = 0.6t^2\bar{i} + 0.5t^2\bar{j}$. Масса детали m = 9 кг. Модуль силы, действующей на деталь, равен ... (H)

Ответ округлите до сотых.

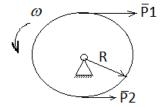
12. Введите ответ числом.


Кинетическая энергия детали транспортного средства, двигающейся поступательно со скоростью $v=2\,\mathrm{m/c}$ и массой $m=4\,\mathrm{kr}$, равна ... (Дж)

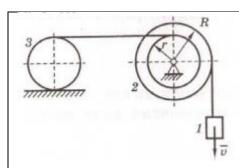
Ответ округлить до целого значения.

13. Введите ответ числом.

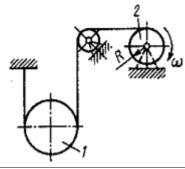
Найти сумму моментов внешних сил $\overline{P}_1=10\kappa H$ и $\overline{P}_2=8\kappa H$, действующих на деталь механизма, вращающуюся с угловой скоростью $\omega=2$ рад/с, радиус детали R=0,2 м, ответ в кHм.


Ответ округлить до десятых, ввести по модулю.

14. Введите ответ числом.

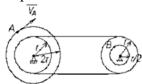

Найти суммарную мощность внешних сил $\overline{P}_1=10\kappa H$ и $\overline{P}_2=8\kappa H$, действующих на деталь механизма, вращающуюся с угловой скоростью $\omega=2$ рад/с, радиус детали R=0,2 м, (ответ в Вт).

Ответ ввести по модулю.



15. Введите ответ числом.

Узел механизма состоит из тел 1, 2 и 3. Груз 1 имеет скорость v1=10 м/с , блок 2 состоит из двух ступеней, каток 3 катится без скольжения. Нить нерастяжима, масса катка равна m=10 кг, R=0,3 м, r=0,15 м. Модуль количества движения катка равен...(кгм/с).



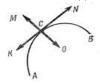
16. Шкив 2 радиуса R=0.2 м, вращаясь с угловой скоростью $\omega=20$ рад/с, поднимает однородный цилиндр 1 массой m=50 кг. Модуль количества движения цилиндра 1 равен...(кгм/с) Ответ округлить до целого значения.

17. Продемонстрируйте умение определять момент инерции детали транспортного механизма - однородного стержня ОА длиной l =0,4 м и массой m =2 κz , вращающегося вокруг оси z, расположенной перпендикулярно плоскости чертежа, пересекающей плоскость чертежа в точке О, соответствующей концу стержня ($\kappa r^* m^2$). Ответ округлите до десятых.

18. Два шкива соединены ременной передачей. Точка A одного из шкивов имеет скорость V_A =20 см/с. Скорость точки B другого шкива в этом случае равна...

19. Груз A массой m=4 $\kappa \epsilon$ прикреплен к невесомому стержню OA длиной l=5 m и вращается относительно оси, проходящей через конец O стержня перпендикулярно ему, с угловой скоростью $\omega=2$ $pa\partial/c$. Кинетическая энергия груза равна...

20. На наклонной плоскости лежит груз. Коэффициент трения скольжения равен 0,6. Если груз находится в покое, то максимальный угол наклона плоскости к горизонту в градусах равен...

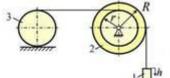

21. К однородному катку на горизонтальной поверхности весом 4 кН приложена пара сил с моментом 20 Нм. Тогда наименьший коэффициент трения качения, при котором каток находится в покое, равен...

22. Тело весом G=10 Н удерживается в равновесии на шероховатой наклонной плоскости с углом наклона $\alpha=15^{\rm o}$ (коэффициент трения скольжения f=0,1) силой \overline{S} Н. Для справки: $\sin 15^{\rm o}=\cos 75^{\rm o}=0,26$; $\sin 75^{\rm o}=\cos 15^{\rm o}=0,96$). Минимальное значение силы S удерживающее тело от перемещения вниз по наклонной плоскости равно...ответ округлите до десятых значений.

23. Какое из приведенных ниже утверждений верно? Укажите несколько верных ответов.

- 1. ускорение есть кинематическая мера изменения вектора скорости
- 2. истинное ускорение в прямолинейном движении равно первой производной скорости по времени
- 3. истинное ускорение в прямолинейном движении равно второй производной координаты по времени
- 4. ускорение является кинематической мерой равномерного движения точки
- 24. Точка движется равнозамедлено по дуге окружности. Выберите несколько правильных утверждений.
- 1. ускорение точки равно геометрической сумме касательного и нормального ускорений
- 2. касательное ускорение направлено по касательной противоположно вектору скорости точки.
- 3. Нормальное ускорение направлено к перпендикулярно касательному ускорению.
- 4. Полное ускорение точки будет равно касательному ускорению точки.
- 25. Точка C движется из A в B по траектории, указанной на рисунке. Укажите верные утверждения.

- 26. К числу принципов аналитической механики относятся принципы? Выберите несколько правильных ответов.
- 27. Колесо радиуса R=0,1 м, масса которого m=3 кг равномерно распределена по окружности, вращается вокруг неподвижной оси, проходящей через точку O перпендикулярно плоскости колеса, с угловой скоростью $\omega=5$ рад/с. Кинетическая энергия колеса равна... Ответ округлить до сотых.


28. Колесо радиуса R=0,2 м, масса которого m=5 кг, равномерно распределена по ободу колеса, катится по горизонтальной плоскости без проскальзывания, имея скорость центра масс V=8 м/с. Кинетическая энергия колеса равна...

29. Однородный стержень длиной l =4 м и массой m=5 κz вращается относительно оси, проходящей через его середину O перпендикулярно ему, с угловой скоростью ω =4 рад/с. Кинетическая энергия стержня равна... ответ округлить до десятых значений.

30. Система состоит из тел 1, 2 и 3, связанных между собой посредством нерастяжимых нитей.

Проскальзывание нерастяжимой нити отсутствует. Блок 2 состоит из двух ступеней разных радиусов, каток 3 (однородный цилиндр) катится без скольжения. Массы всех тел одинаковы и равны $m=5~\kappa z$. Работа сил тяжести данной системы при перемещении груза 1 на величину $h=2~\mathrm{m}$ вниз равна...

<u>Вопрос 31.</u> Что получается в результате приведения силы к заданному центру? Выберите правильный вариант ответа:

1. Сила. 2. Пара сил. 3. Сила и пара сил. 4. Главный вектор.

<u>Вопрос 32.</u> Сколько условий равновесия можно записать для сходящихся сил? Выберите правильный вариант ответа:

1. Одно. 2. Два. 3. Три. 4. Четыре.

<u>Вопрос 33.</u> Сколько независимых уравнений равновесия можно составить для плоской системы сил? Выберите правильный вариант ответа:

1. Одно. 2. Два. 3. Три. 4. Шесть.

<u>Вопрос 34.</u> Сколько условий равновесия можно составить для плоской системы сил? Выберите правильный вариант ответа:

1. Одно. 2. Два. 3. Три. 4. Шесть.

<u>Вопрос 35.</u> Сколько независимых уравнений равновесия можно составить для произвольной системы сил в пространстве?

Выберите правильный вариант ответа:

1. Три. 2. Четыре 3. Пять. 4. Шесть.

Материалы для промежуточной аттестации

Перечень вопросов к экзамену

Для очной и очно-заочной формы обучения

Вопросы	Индикаторы достижения компетенций
Раздел Статика	
1. Основные понятия статики (сила, система сил, равнодействующая, аксиомы, несвободное твердое тело, связи и их реакции).	ОПК-1.1.1.
2. Момент силы относительно точки и оси.	ОПК-1.2.1.
3. Пара сил и ее свойства. Момент пары сил.	ОПК-1.1.1.
4. Приведение силы к центру. Метод Пуансо.	ОПК-1.1.1.
5. Приведение произвольной системы сил к центру. Главный вектор и главный момент. Частные случаи приведения системы сил к центру.	ОПК-1.2.1.
6. Условия и уравнения равновесия произвольной пространственной системы сил.	ОПК-1.3.1
7. Условия и уравнения равновесия систем сил в частных случаях для пространственной системы сил.	ОПК-1.3.1.
8. Условия и уравнения равновесия систем сил в частных случаях для плоской системы сил.	ОПК-1.3.1
9. Равновесие сил, приложенных к системе тел. Статически определенные и статически неопределенные задачи.	ОПК-1.1.1.
10. Рычаг. Условия устойчивости против опрокидывания.	ОПК-1.1.1.
11. Сцепление и трение. Трение качения.	ОПК-1.1.1.
12. Центр тяжести тела, объема, площади, линии и его координаты.	ОПК-1.1.1.
Раздел Кинематика	

13. Кинематика точки. Векторный способ задания движения точки. Скорость и ускорение.	ОПК-1.2.1.
14. Координатный способ задания движения точки. Задание	ОПК-1.2.1.
движения в прямоугольных декартовых координатах.	0111(1.2.1.
Скорость и ускорение.	
15. Естественный способ задания движения точки. Естественные	ОПК-1.2.1.
оси. Скорость и ускорение точки.	01111 11 2 111
16. Уравнения равномерного и равнопеременного движения	ОПК-1.1.1.
точки. Классификация движения точки по ускорениям.	
17. Кинематика твердого тела. Поступательное движение и его	ОПК-1.1.1.
свойства. Уравнения поступательного движения.	
18. Вращение тела вокруг неподвижной оси. Угловая скорость,	ОПК-1.2.1.
угловое ускорение и их векторы. Уравнения равномерного и	
равнопеременного вращения.	
19. Векторные выражения для скорости и ускорения точки	ОПК-1.2.1.
вращающегося твердого тела. Передаточные механизмы.	
20. Плоское движение твердого тела. Разложение плоского	ОПК-1.2.1.
движения на составляющие движения. Уравнения плоского	
движения. Теорема о скоростях точек плоской фигуры.	
21. Следствия из теоремы о скоростях точек плоской фигуры.	ОПК-1.2.1.
Пример.	
22. Мгновенный центр скоростей и способы определения его	
положения. Нахождение скоростей точек плоской фигуры при	ОПК-1.2.1.
помощи МЦС.	
23. Теорема об ускорениях точек плоской фигуры и ее следствия.	ОПК-1.1.1.
24. G	
24. Сложное движение точки, основные определения.	ОПК-1.1.1.
25. Теорема о сложении скоростей в сложном движении.	ОПК-1.2.1.
26. Теорема о сложении ускорений в сложном движении.	ОПК-1.2.1.
27. Модуль и направление ускорения Кориолиса. Пример.	ОПК-1.2.1.
Раздел Динамика	
28. Основные законы классической механики.	ОПК-1.1.1.
29. Основное уравнение динамики. Дифференциальные	ОПК-1.1.1.
уравнения движения материальной точки в декартовых	
координатах. Две основные задачи динамики.	
30. Механическая система. Классификация сил, приложенных к	ОПК-1.1.1.
системе. Свойство внутренних сил.	
31. Центр масс механической системы и его координаты. Теорема	ОПК-1.1.1.
о движении центра масс. Следствия теоремы.	
32. Дифференциальные уравнения поступательного движения	ОПК-1.2.1.
твердого тела.	
33. Количество движения материальной точки. Импульс силы.	ОПК-1.1.1.
Импульс равнодействующей. Теорема об изменении	
количества движения материальной точки. Следствия	
теоремы.	OFFICIAL L
34. Количество движения механической системы. Теорема об	ОПК-1.1.1.
изменении количества движения механической системы и ее	
следствия.	OTIC 1 1 1
35. Момент количества движения материальной точки. Теорема	ОПК-1.1.1.
об изменении момента количества движения материальной	
точки. Следствия теоремы.	OTIV 1 1 1
36. Кинетический момент механической системы. Теорема об	ОПК-1.1.1.
изменении кинетического момента механической системы.	
Следствия теоремы.	
37. Кинетический момент вращающегося тела относительно оси	ОПК-1.1.1.

его вращения. Дифференциальное уравнение вращения тела	
вокруг неподвижной оси.	
38. Моменты инерции твердого тела. Теорема о моментах	ОПК-1.2.1.
инерции тела относительно параллельных осей. Моменты	
инерции тел правильной формы.	
39. Работа силы, приложенной к материальной точке. Работа	ОПК-1.2.1.
силы тяжести, силы упругости и постоянной силы трения	
скольжения. Мощность силы.	
40. Кинетическая энергия материальной точки. Теорема об	ОПК-1.2.1.
изменении кинетической энергии материальной точки.	
41. Кинетическая энергия механической системы (теорема	ОПК-1.1.1.
Кёнига).	
42. Кинетическая энергия твердого тела в разных случаях его	ОПК-1.2.1.
движения.	
43. Теорема об изменении кинетической энергии механической	ОПК-1.2.1.
системы и абсолютно твердого тела.	

3. Описание показателей и критериев оценивания индикаторов достижения компетенций, описание шкал оценивания

Показатель оценивания – описание оцениваемых основных параметров процесса или результата деятельности.

Критерий оценивания – признак, на основании которого проводится оценка по показателю. Шкала оценивания – порядок преобразования оцениваемых параметров процесса или результата деятельности в баллы.

Показатели, критерии и шкала оценивания заданий текущего контроля приведены в таблицах 3.1.,3.2

Таблица 3.1 Для очной формы обучения

№ п/п	Материалы необходимые для оценки знаний, умений и навыков	Показатель оценивания	Критерии оценивания	Шкала оценива ния
1	Решение типовых задач № 1-№8	Правильность решения	Типовая задача решена правильно	5
			Типовая задача решена правильно, но имеет значительные недочеты	3
			Типовая задача решена неверно	0
		Итого максимальное задание	количество баллов за	50
2		Правильность ответа	Получен правильный ответ на вопрос	1
	Тест	на вопрос	Получен неправильный ответ на вопрос	0
		Итого максимальное	количество баллов за тест	20
ИТОГ	О максимальное количест	гво баллов по текущем _.	у контролю	70

Для обучающихся очно-заочной формы обучения (кроме профиля «Автомобильные дороги»)

№ п/п	Материалы необходимые для оценки знаний, умений и навыков	Показатель оценивания	Критерии оценивания	Шкала оценива ния
1	Контрольная работа №1	Правильность решения	Контрольная работа решена правильно	25
	Контрольная работа №2		Контрольная работа решена правильно, но имеет значительные недочеты	20
			Контрольная работа решена неправильно	0
		Итого максимально контрольные работ	ое количество баллов две ъ	50
2		Правильность	Получен правильный ответ на вопрос	1
	Тестовое задание ответа на вопрос	Получен неправильный ответ на вопрос	0	
		Итого максимально тест	ое количество баллов за	20
ИТОГ	О максимальное количество	о баллов по текущем	у контролю	70

4. Методические материалы, определяющие процедуры оценивания индикаторов достижения компетенций

Процедура оценивания индикаторов достижения компетенций представлена в таблицах 4.1., 4.2.

Формирование рейтинговой оценки по дисциплине

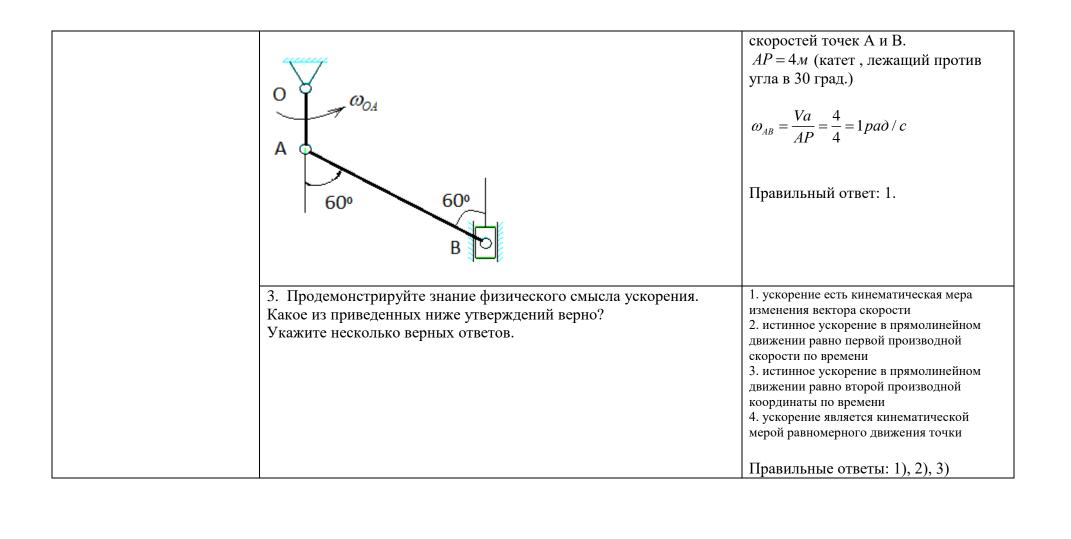
Таблица 4.1 Для очной формы обучения *

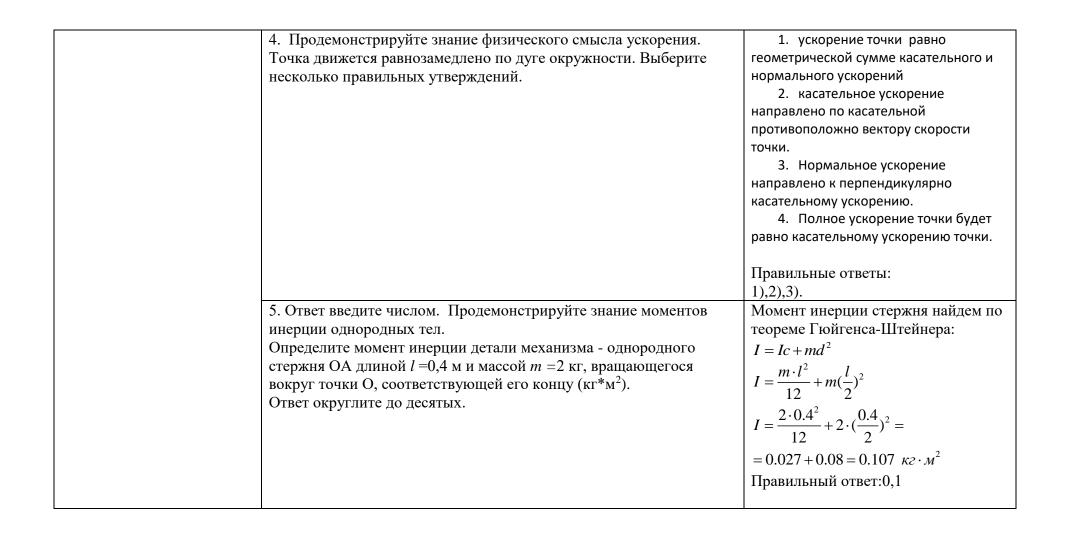
Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль успеваемости	Решение РГР № 1-10, Тестовое задание	70	Количество баллов определяется в соответствии с таблицей 3.1 Допуск к экзамену ≥ 50 баллов
2. Промежуточная аттестация	Перечень вопросов к экзамену	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или вопросы или вопросы не раскрыты – 010 баллов.
	ИТОГО	100	paragraph transfer
3. Итоговая оценка	«Отлично» - 86-100 ба. «Хорошо» - 75-85 балл		

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
«Удовлетворительно» - 60-74 баллов (вкл.)			

^{*}Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета.

Для обучающихся очно-заочной формы обучения (кроме профиля «Автомобильные дороги»)


Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль успеваемости	Контрольные работы №1,№2, Тестовое задание	70	Количество баллов определяется в соответствии с таблицей 3.2 Допуск к экзамену ≥ 50 баллов
2. Промежуточная аттестация	Перечень вопросов к экзамену.	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или вопросы или вопросы не раскрыты – 010 баллов.
	ИТОГО	100	
«Отлично» - 86-100 баллов «Хорошо» - 75-85 баллов «Удовлетворительно» - 60-74 баллов «Неудовлетворительно» - менее 59 баллов (вкл.)			


Процедура проведения экзамена осуществляется в форме устного ответа на вопросы билета.

Билет на экзамен содержит вопросы из перечня вопросов промежуточной аттестации п.2 и одно задание из перечня расчетно-графических работ.

Таблица 5.1

Индикатор достижения общепрофессиональной компетенции	Содержание задания	Эталон ответа
ОПК-1. Способен решат	ь задачи профессиональной деятельности на основе использования те естественных и технических наук, а также математического апт	
ОПК-1.1.1. Знает теоретические и практические основы естественных и технических наук, а также математического аппарата для решения задач профессиональной деятельности	1. Продемонстрируйте знание теории плоского движения. Дан кривошипно-шатунный механизм. Найти угловую скорость кривошипа ОА, если известна скорость точки А Va=10 м/с, длина шатуна AB=8 м, длина кривошипа ОА =2 м. (рад/с) Ответ округлить до целого значения.	$Va = \omega_{oA} \cdot OA$ $\omega_{oA} = \frac{V_A}{OA}$ $\omega_{oA} = \frac{10}{2} = 5 pad / c$ Правильный ответ: 5.
	2.Ответ введите целым числом. Продемонстрируйте знание теории плоского движения. Дан кривошипно-шатунный механизм. Найти угловую скорость шатуна AB, если известна длина шатуна AB=8 м, длина кривошипа OA =2 м, $\omega_{OA}=2$ рад/с. (рад/с)	$Va = \omega_{oA} \cdot OA$ $Va = 2 \cdot 2 = 4 M / c$ $Va = \omega_{AB} \cdot AP$ Р-мгновенный центр скоростей, находим, восстанавливая перпендикуляры к направлениям

6. Введите ответ числом.	Продемонстрируйте знание формулы для
нахождения центра тяжес	сти тела.

Найти координату центра тяжести детали механизма относительно оси x, если a=50 см, b=60 см, c=40 см, e=20 см, f=30 см, d=10 см. Ответ округлить до десятых.

$$x_{c} = \frac{V_{1}x_{1} - V_{2}x_{2}}{V_{1} - V_{2}}$$

$$x_{c} = \frac{(50 \cdot 60 \cdot 40) \cdot 30 - (30 \cdot 30 \cdot 10) \cdot 45}{(50 \cdot 60 \cdot 40) - (30 \cdot 30 \cdot 10)}$$

$$x_{c} = 28.78 \text{ cm}$$

Правильный ответ: 28,8.

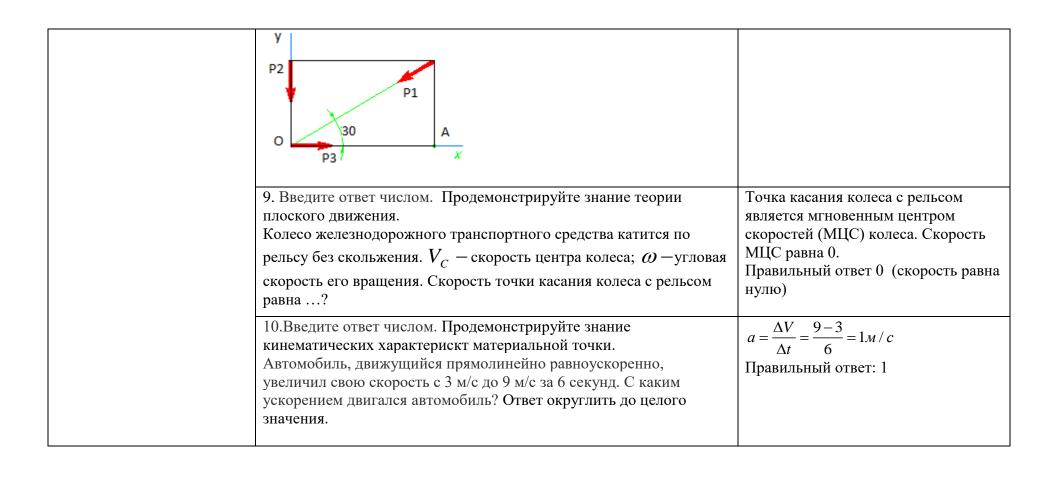
7.Ответ введите числом. Продемонстрируйте знание нахождения проекции скорости точки.

Находите проекцию скорости детали механизма, движущейся поступательно, по уравнению ее движения, заданному в координатной форме $x = 3t^2 + t + 3$, (м) в момент времени t=1 с (м/с) Ответ округлить до целого значения.

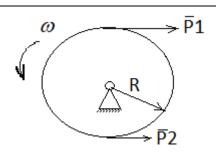
$$V_X = \dot{x} = 6t + 1$$
$$V_X (t = 1c) = 7 \ \text{m/c}$$

Правильный ответ: 7

8. Продемонстрируйте знание основных понятий статики. Найдите сумму моментов сил, действующих на деталь механизма, относительно точки А. Исходные данные:

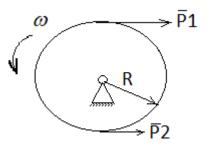

$$P_1 = 2\sqrt{3} \ \kappa H; P_2 = \sqrt{3} \ \kappa H;$$

$$P_3 = 4 \kappa H$$
; $OA = 2 M$.


Ответ округлите до целого значения. (кН/м).

$$\sum M_A = P_1 \cos 30^\circ \cdot OA \cdot tg \cdot 30^\circ + P_2 \cdot OA$$
$$\sum M_A = 4\sqrt{3} = 6,92\kappa H \cdot M$$

Правильный ответ: 7

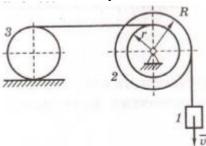


	11.Введите ответ числом. Продемонстрируйте умение находить равнодействующую сил, действующих на материальную точку. Движение центра масс детали механизма в плоскости Оху определяется радиусом-вектором $\bar{r}=0.6t^2\bar{i}+0.5t^2\bar{j}$. Масса детали $m=9$ кг. Модуль силы, действующей на деталь, равен (H) Ответ округлите до сотых.	$x = 0.6t^{2}M$ $y = 0.5t_{2}M$ $\ddot{x} = 1,2M/c^{2}$ $\ddot{y} = 1M/c^{2}$ $P_{x} = m\ddot{x} = 1,2 \cdot 9 = 10.8H$ $P_{y} = m\ddot{y} = 1 \cdot 9 = 9H$ $P = \sqrt{P_{x}^{2} + P_{y}^{2}} = \sqrt{10.8^{2} + 9^{2}} = 14H$
ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и технических наук, а также	12. Введите ответ числом. Продемонстрируйте умение находить кинетическую энергию материальной точки. Кинетическая энергия детали транспортного средства, двигающейся поступательно со скоростью v = 2 м/с и массой m = 4 кг, равна (Дж) Ответ округлить до целого значения.	Правильный ответ: 14 H $T = \frac{mV^2}{2} = \frac{4 \cdot 4}{2} = 8 \text{Дж}$ Правильный ответ: 8
математического аппарата	13. Введите ответ числом. Продемонстрируйте умение находить момент внешней силы, действующей на вращающееся тело. Найти сумму моментов внешних сил $\overline{P}_1=10\kappa H$ и $\overline{P}_2=8\kappa H$, действующих на деталь механизма, вращающуюся с угловой скоростью $\omega=2$ рад/с, радиус детали $R=0,2$ м, ответ в кНм. Ответ округлить до десятых, ввести по модулю.	$\sum M^E = P_2 \cdot R - P_1 \cdot R$ $\sum M^E = 8 \cdot 0.2 - 10 \cdot 0.2 = -0.4 \text{ кHm}$ Правильный ответ: 0,4

14. Введите ответ числом. Продемонстрируйте умение находить мощность силы.

Найти суммарную мощность внешних сил $\overline{P}_1=10\kappa H$ и $\overline{P}_2=8\kappa H$, действующих на деталь механизма, вращающуюся с угловой скоростью $\omega=2$ рад/с, радиус детали R=0,2 м, (ответ в Вт). Ответ ввести по модулю.

$$\sum M^{E} = P_2 \cdot R - P_1 \cdot R$$


$$\sum N^{E} = \sum M^{E} \cdot \omega = (P_{2} \cdot R - P_{1} \cdot R) \cdot 2 =$$

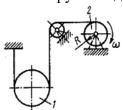
$$= -0.8Bm$$

Правильный ответ:0,8

15. Введите ответ числом. Продемонстрируйте умение находить
количество движения твердого тела.

Узел механизма состоит из тел 1, 2 и 3. Груз 1 имеет скорость v1=10 м/с, блок 2 состоит из двух ступеней, каток 3 катится без скольжения. Нить нерастяжима, масса катка равна m=10 кг, R=0,3 м, r=0,15 м. Модуль количества движения катка равен...(кгм/с).

$$K = m \cdot V_C$$


 \boldsymbol{V}_{C} - скорость центра масс катка.

$$V_c = \frac{V_1}{4} = \frac{10}{4} = 2.5 \,\text{m/c}.$$

$$K = m \cdot V_{C} = 10 \cdot 2.5 = 25$$
кг м/с

Правильный ответ: 25

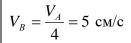
16. Продемонстрируйте умение находить количество движения твердого тела. Шкив 2 радиуса R=0,2 м, вращаясь с угловой скоростью $\omega=20$ рад/с, поднимает однородный цилиндр 1 массой m=50 кг. Модуль количества движения цилиндра 1 равен...(кгм/с) Ответ округлить до целого значения.

$$V = \omega 2 \cdot R2 = 4 \text{ m/c}$$

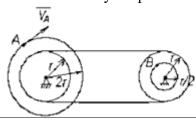
 $\boldsymbol{V}_{\scriptscriptstyle C}$ - скорость центра масс катка.

$$V_{c} = \frac{V}{2} = 2 \text{ m/c}$$

$$K = m \cdot V_C = 50 \cdot 2 = 100$$
 кгм/с


Правильный ответ: 100

17. Продемонстрируйте умение определять момент инерции детали
транспортного механизма - однородного стержня ОА длиной l =0,4
м и массой $m = 2 \kappa z$, вращающегося вокруг оси z , расположенной
перпендикулярно плоскости чертежа, пересекающей плоскость
чертежа в точке O , соответствующей концу стержня (кг $*$ м 2).
Ответ округлите до десятых.


$$J_o = J_C + m \cdot d^2$$

$$J_C = \frac{m \cdot l^2}{12}$$

$$d = \frac{l}{2}$$

$$J_o = \frac{m \cdot l^2}{12} + m \cdot \frac{l}{4}^2 = \frac{m \cdot l^2}{3}$$

$$J_o = 0.1 \ \kappa z \cdot m^2$$
 Правильный ответ: 0,1

18. Продемонстрируйте умение находить скорость точки вращающегося твердого тела.

Два шкива соединены ременной передачей. Точка A одного из шкивов имеет скорость V_A =20 см/с. Скорость точки B другого шкива в этом случае равна...

Правильный ответ: 5

19. Продемонстрируйте умение находить кинетическую энергию материальной точки.

Груз A массой m=4 κ г прикреплен к невесомому стержню OA длиной l=5 M и вращается относительно оси, проходящей через конец O стержня перпендикулярно ему, с угловой скоростью $\omega=2$ pad/c. Кинетическая энергия груза равна...

$$T = \frac{mV^2}{2} = \frac{4 \cdot (2 \cdot 5)^2}{2} = 200$$
 Дж

Правильный ответ: 200

ОПК-1.3.1. Владеет теоретическими и практическими основами естественных и технических наук, а также математического аппарата в объеме, необходимом для решения задач профессиональной деятельности	 20. Продемонстрируйте владение теорией сухого трения. На наклонной плоскости лежит груз. Коэффициент трения скольжения равен 0,6. Если груз находится в покое, то максимальный угол наклона плоскости к горизонту в градусах равен 21. Продемонстрируйте владение теорией качения тел. К однородному катку на горизонтальной поверхности весом 4 кН приложена пара сил с моментом 20 Нм. Тогда наименьший коэффициент трения качения, при котором каток находится в покое, равен 22. Продемонстрируйте владение теорией сухого трения. Тело весом G = 10 Н удерживается в равновесии на шероховатой наклонной плоскости с углом наклона α = 15° (коэффициент трения скольжения f = 0,1) силой \$\overline{S}\$ Н. Для справки: sin15° = cos75° = 0,26; sin75° = cos15° = 0,96). Минимальное значение силы \$S\$ удерживающее тело от перемещения вниз по наклонной плоскости равноответ округлите до десятых значений. 	$\alpha = arctgf = arctg0.6 = 31^0$ Правильный ответ: 31^0 Условие покоя: $M = G \cdot \delta$ $\delta = \frac{M}{G} = \frac{20}{4000} = 0.005$ Правильный ответ: 0.005 $G \sin 15^\circ = S + F_{cq}$ $G \cos 15^\circ f = F_{cq}$ $G \sin 15^\circ - G \cos 15^\circ f$ $G \sin 15^\circ - G \cos 15^\circ f = S$ $S = 10 \cdot 0.26 - 10 \cdot 0.96 \cdot 0.1 = 1.64$ Н Правильный ответ: 1.6
	23. Продемонстрируйте владение практическими знаниями для нахождения вращательной скорости точки Деталь механизма совершает вращательное движение с угловой скоростью ω = 2 рад/с. Найти скорость точки (м/с), лежащей на ободе детали, если радиус детали 0,58 м. Ответ округлить до сотых.	$V_M = \omega \cdot R = 2 \cdot 0.5 = 1_M / c$ Правильный ответ: 1 м/с

w M	
24. Ответ введите числом. Продемонстрируйте умение определять работу постоянной силы $\vec{P}=10~\mathrm{kH}$, действующей на деталь механизма, при перемещении детали на расстояние $S=0.2~m$, если деталь скользит по плоскости, наклоненной под углом $\alpha=45~\mathrm{^ok}$ горизонту. Скорость детали и сила \vec{P} , приложенная к детали, совпадают по направлению. (Дж)	$A = P \cdot S \cdot \cos(\vec{P}, \vec{S})$ $A = 10 \cdot 0, 2 \cdot \cos(0^{\circ}) = 2 \text{Дж}$
Ответ округлить до целого значения.	Правильный ответ: 2
25. Продемонстрируйте владение понятиями кинематики. Точка C движется из A в B по траектории, указанной на рисунке. Укажите верные утверждения.	1. Скорость точки C направлена по вектору \overline{N} 2. Нормальное ускорение направлено по вектору \overline{O} 3. Касательное ускорение лежит по вектору \overline{K} . 4. Полное ускорение направлено по вектору \overline{M} . 5. Правильные ответы: 1),2),3).

26. Продемонстрируйте владение понятиями динамики. К числу принципов аналитической механики относятся принципы? Выберите несколько правильных ответов.	1. сохранения кинетического момента 2. возможных перемещений 3. Лагранжа-Даламбера 4. сохранения механической энергии Правильные ответы: 2),3).
27. Продемонстрируйте владение понятием кинетической энергии тела. Колесо радиуса $R=0,1$ м, масса которого $m=3$ кг равномерно распределена по окружности, вращается вокруг неподвижной оси, проходящей через точку O перпендикулярно плоскости колеса, с угловой скоростью $\omega=5$ рад/с. Кинетическая энергия колеса равна Ответ округлить до сотых.	Момент инерции колеса найдем по теореме Гюйгенса-Штейнера: $Io = Ic + md^2$ $Io = \frac{m \cdot R^2}{2} + mR^2$ $Io = \frac{3 \cdot 0.1^2}{2} + 3 \cdot 0.1^2 = 0.015 + 0.03 = 0.045$ кг м² Кинетическая энергия вращательного движения $T = \frac{Io \cdot \omega^2}{2} = \frac{0.045 \cdot 5^2}{2} = 0.56$ Дж
28. Продемонстрируйте владение теорией плоского движения. Колесо радиуса $R=0,2$ м, масса которого $m=5$ кг, равномерно распределена по ободу колеса, катится по горизонтальной плоскости без проскальзывания, имея скорость центра масс $V=8$ м/с. Кинетическая энергия колеса равна	Правильный ответ: 0,56 Момент инерции колеса равен: $Ic = \frac{m \cdot R^2}{2} = \frac{5 \cdot 0,2^2}{2} = 0,1 \text{кг м}^2$ Кинетическая энергия плоского движения:

	$T = \frac{m \cdot V^2}{2} + \frac{Io \cdot \omega^2}{2} =$ $= \frac{5 \cdot 8^2}{2} + \frac{0.1 \cdot \left(\frac{8}{0.2}\right)^2}{2} = 240 $ Джс Правильный ответ: 240
29. Продемонстрируйте владение понятием кинетической энергии. Однородный стержень длиной $l=4$ м и массой $m=5$ $\kappa 2$ вращается относительно оси, проходящей через его середину O перпендикулярно ему, с угловой скоростью $\omega=4$ рад/с. Кинетическая энергия стержня равна ответ округлить до десятых значений.	Момент инерции стержня равен: $Ic = \frac{m \cdot l^2}{12} = \frac{5 \cdot 4^2}{12} = 6.7 \text{ кг м}^2$ Кинетическая энергия вращательного движения: $T = \frac{Ic \cdot \omega^2}{2} = \frac{6.7 \cdot 4^2}{2} = 53.6 \text{Дж}$ Правильный ответ: 53.6
30. Продемонстрируйте владение понятием работы силы. Система состоит из тел 1, 2 и 3, связанных между собой посредством нерастяжимых нитей. Проскальзывание нерастяжимой нити отсутствует. Блок 2 состоит из двух ступеней разных радиусов, каток 3 (однородный цилиндр) катится без скольжения. Массы всех тел одинаковы и равны $m=5\ \kappa z$. Работа сил тяжести данной системы при перемещении груза 1 на величину $h=2$ м вниз равна	Совершать работу будет только сила тяжести, приложенная к первому телу: $A = G \cdot S \cdot \cos 0^0 = 5 \cdot 10 \cdot 2 \cdot 1 = 100 \text{Дж}$ Правильный ответ: 100 Дж

Разработчик оценочных материалов, доцент	 Е.В. Опарина
20r.	